Skip to main content

What is Secure Shell (SSH) and how to configure SSH in Cisco Devices

What is Secure Shell (SSH)
Secure Shell is a protocol that can be used in the place of well known Telnet protocol to remotely connect to your Cisco Router or Switch. Telnet has long been used to manage network devices; however, Telnet traffic is sent in clear text. Anyone able to sniff that traffic would see your password and any other information sent during the Telnet session. Secure Shell (SSH) is a much more secure way to manage your routers and switches. It is a client/server protocol that encrypts the traffic in and out through the vty ports.

Cisco routers and switches can act as SSH clients by default, but must be configured to be SSH servers. That is, they can use SSH when connecting to another device, but require configuration before allowing devices to connect via SSH to them. They also require some method of authenticating the client. This can be either a local username and password, or authentication with a AAA server (AAA is detailed in the next section).

There are two versions of SSH. SSH Version 2 is an IETF standard that is more secure than version 1. Version 1 is more vulnerable to man-in-the-middle attacks, for instance. Cisco devices support both types of connections, but you can specify which version to use.
How to Configure SSH in Cisco Devices
Telnet is enabled by default, but configuring even a basic SSH server requires several following steps:
1. Ensure that your IOS supports SSH. You need a K9 image for this.
2. Configure a host name.
3. Configure a domain name.
4. Configure a client authentication method.
5. Tell the router or switch to generate the Rivest, Shamir, and Adelman (RSA) keys that will be used to encrypt the session.
6. Specify the SSH version, if you want to use version 2.
7. Disable Telnet on the VTY lines.
8. Enable SSH on the VTY lines.
Here are the configuration command to configure Secure Shell on Cisco Routers or Switches
router(config)# hostname R1
R1(config)# ip domain-name networkpcworld
R1(config)# username cisco password Cisco
R1(config)# crypto key generate rsa
The name for the keys will be: R1.networkpcworld
Choose the size of the key modulus in the range of 360 to 2048 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.
How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys …[OK]
R1(config)#
*May 22 02:06:51.923: %SSH-5-ENABLED: SSH 1.99 has been enabled
R1(config)# ip ssh version 2
!
R1(config)# line vty 0 4
R1(config-line)# transport input none
R1(config-line)# transport input ssh
R1(config-line)#^Z
!
R1# show ip ssh
SSH Enabled – version 2.0
Authentication timeout: 120 secs; Authentication retries: 3

Comments

Popular posts from this blog

Basic MPLS BGP and L3VPN Lab Setup

In this lab, we’ve set up a basic MPLS, BGP, and L3VPN environment, which is a great foundation for understanding how service providers build scalable networks. The lab uses the EVE-NG simulator along with Router IOS C7200-ADVENTERPRISEK9-M, Version 15.2(4)M8 to emulate a realistic MPLS environment. Below is a summary of the key components and roles of each router in the lab. MPLS Core Routers : The MPLS core consists of the routers responsible for label switching and forwarding customer traffic through the network: PE1 (Provider Edge 1) : Connects customer networks to the MPLS core and handles both MPLS and BGP routing. It also hosts VRF (Virtual Routing and Forwarding) instances for customers. PE2 (Provider Edge 2) : Functions similarly to PE1, connecting another customer network to the MPLS core. P1 (Core Router 1) and P2 (Core Router 2) : These routers serve as MPLS core routers and handle label switching but do not store or process customer routes directly. They simply f

OSPF Adjacency Stuck in EXSTART on Cisco IOS XR – Issue and Solution

In a recent lab setup using Cisco IOS XR on EVE-NG, I faced a common but frustrating issue with OSPF adjacencies getting stuck in the EXSTART state. After spending considerable time troubleshooting interface MTUs and configurations, I discovered that the root cause was related to the virtual network interface type being used. This post outlines the issue, troubleshooting steps, and the eventual solution that got everything working. Issue: While configuring OSPF between two routers running Cisco IOS XR in my lab, OSPF adjacencies were getting stuck in the EXSTART state. I verified that interface configurations, MTU settings, and OSPF parameters were correct, but the problem persisted. I tried adjusting the MTU size, using the mtu-ignore command, and even checked for ACLs, but nothing seemed to resolve the issue. Troubleshooting Steps: MTU Settings: I started by verifying that both sides of the OSPF adjacency had matching MTUs. I used the default MTU and even tried different values wit

How to Properly Clone an EVE-NG Lab with Configurations

Cloning labs in EVE-NG is a great way to duplicate setups and expand or experiment on a new copy without affecting the original lab. However, if not done correctly, the cloned lab may only copy the topology without configurations. In this guide, I’ll show you how to properly clone a lab in EVE-NG with all configurations using the EVE-NG GUI . Follow these steps to ensure that both the topology and router configurations are retained when cloning your lab. Steps to Clone an EVE-NG Lab with Configurations Save Running Configuration on All Devices In your original lab, make sure all devices have their configurations saved to NVRAM. Go into the CLI of each router and run the command: copy running-config startup-config Export All Configurations (CFGs) On the left sidebar in the EVE-NG Web UI , click on the "More Actions" option. Then select "Export all CFGs" . This step exports the configurations of all devices in the lab. Shutdown All Devices After exporting the confi