Skip to main content

Understanding Classful vs. Classless Routing: Key Differences Explained

 Classful Routing:

Classful routing refers to a method where routing decisions are made based on the fixed subnet mask of IP address classes (A, B, C). It doesn’t transmit subnet mask information in routing updates, assuming default subnet masks based on IP address class. This approach was commonly used in older protocols like RIPv1 and IGRP.

  • Key Characteristics:

    • No subnet information is shared between routers.
    • IP addresses are divided strictly into classes (A, B, C, etc.).
    • It doesn’t support Variable Length Subnet Masking (VLSM).
    • Less efficient use of IP address space due to fixed class boundaries.
  • Example:

    • If a router sees an IP address in the range 192.168.1.0, it assumes the default subnet mask of /24 (255.255.255.0), as per Class C rules.

Classless Routing:

Classless routing allows for the use of Variable Length Subnet Masking (VLSM) and sends routing updates with subnet mask information. This allows for more flexible and efficient use of IP address space. Classless routing is used in modern routing protocols like RIPv2, OSPF, EIGRP, and BGP.

  • Key Characteristics:

    • Subnet mask information is included in routing updates.
    • Supports VLSM, allowing different subnet sizes within the same network.
    • More efficient IP address utilization by allowing networks to be divided into subnets of different sizes.
    • Can summarize routes, enabling more scalable and manageable networks.
  • Example:

    • A router with the network 192.168.1.0/25 (255.255.255.128) can advertise this subnet with the correct subnet mask, allowing other routers to route traffic more precisely.

Key Differences:

AspectClassful RoutingClassless Routing
Subnet Mask InfoNot included in routing updatesIncluded in routing updates
VLSM SupportNoYes
IP Address UsageLess efficient (fixed class boundaries)More efficient (flexible subnetting)
Routing ProtocolsRIPv1, IGRPRIPv2, OSPF, EIGRP, BGP
Route SummarizationLimited or not supportedSupported, allowing for route aggregation

Conclusion:

  • Classful routing is based on fixed class rules and is less efficient, while classless routing allows for greater flexibility with VLSM and more efficient use of IP address space.

Comments

Popular posts from this blog

How to import Putty Saved Connections to mRemoteNG

Just started using mRemoteNG and its being very cool to connect to different remote connection with different protocols e.g Window Remote Desktop, VNC to Linux, SSH, HTTP connection etc. from a single application. As new user I configured some remote desktop connection which was quite easy to figure out. But when I wanted to add SSH connections, it came in my mind to import all of the saved connections in the putty. But I couldn't figure it out how can it be done, though it was quite easy and here are the steps. Open your mRemoteNG Create a folder if you want segregation of multiple networks Create a new connection Enter the IP address of remote server under connection in Config pane Under the config pane, select protocol " SSH version 2 ".  Once you select protocol to SSH version 2 you are given option to import putty sessions, as shown in the snap below. In the above snap, I have imported CSR-AWS session from my saved sessions in Putty.

Authoritative DNS Servers Delegation and Internal DNS Explained

DNS (Domain Name System) plays a critical role in how users and systems find resources on the internet or within internal networks. Whether it's managing an internal domain in an enterprise or delegating parts of a domain for traffic distribution, DNS setups vary widely depending on needs. In this blog post, we’ll break down the different types of DNS setups, including authoritative DNS servers, DNS delegation, and how internal DNS functions within organizations. 1. Authoritative DNS Server An Authoritative DNS server is the final source of truth for a specific domain. When someone queries a domain (e.g., example.com ), the authoritative DNS server for that domain holds the DNS records (A records, CNAME, MX, etc.) and responds with the corresponding IP address. Key Points: Who can host it? Authoritative DNS servers are often hosted by domain registrars (e.g., GoDaddy, Namecheap) or cloud DNS providers (e.g., AWS Route 53, Cloudflare). However, organizations can also host their ...

BGP MED: Managing Inbound Traffic with Multi-Exit Discriminator

The Multi-Exit Discriminator (MED) is used in BGP to control inbound traffic into your AS. It tells a neighboring AS which entry point into your network it should prefer when there are multiple links between your AS and the neighboring AS. The lower the MED value , the more preferred the path. MED is only honored between the same neighboring AS . Example Scenario : You are connected to ISP1 via two routers, CE1 and CE2 , and want to control which router ISP1 uses to send traffic into your AS. Network Topology : CE1 (connected to ISP1): 10.0.1.1/30 CE2 (connected to ISP1): 10.0.2.1/30 iBGP Router (Internal) connected to both CE1 (10.0.1.2/30) and CE2 (10.0.2.2/30). Configuration on CE1 (Lower MED, More Preferred) : Create a route map to set the MED to 50 for CE1: route-map SET_MED permit 10 set metric 50 Apply this route map to the neighbor in the BGP configuration for CE1: router bgp 65001 neighbor 10.0.1.1 remote-as 65000 neighbor 10.0.1.1 route-map SET_MED out Configuratio...